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Abstract

On the basis of Langmuir’s theory of adsorption of gases on solids, the effect of temperature jump on microscale heat transfer is inves-
tigated. A mathematical model, extended from the classical Graetz problem, is developed to analyze convective heat transfer in a micro-
tube in various slip-flow regimes. The surface slip corrections are made by employing the Langmuir model, as well as the conventional
Maxwell model. The effects of axial heat conduction are also investigated by extending the finite integral transform technique to the slip-
flow case. We show that the Langmuir model always predicts a reduction in heat transfer with increasing rarefaction, as does the
Maxwell model, except when the energy accommodation coefficient is relatively much smaller than that for momentum accommodation.
This implies that, for most physical applications, the Reynolds analogy between heat transfer and momentum transfer is preserved in
slip-flow regimes with low Mach numbers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of non-linear transport in gas flows associated
with micro and nanodevices [1,2] has emerged as an impor-
tant topic in recent years. Understanding the fundamental
physical phenomena [3–5] in such devices is essential in pre-
dicting their performance and searching for an optimal
design. Several international theoretical and experimental
research programmes are aiming to identify the main phys-
ical features of microscale gas flow and heat transfer [1,2,6].
The results of such fundamental work will be critical in
answering questions about the usefulness of micro or nano-
devices: can overall performance be improved by dividing a
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system into large numbers of microscale components? and
can the traditional fluids knowledge base be applied in a
scaled-down fashion to microfluidics?

In the field of microscale heat transfer, convective heat
transfer in slip-flow regimes in simple geometries like chan-
nels and tubes is a key problem. Constant-wall-temperature
convective heat transfer in microscale tubes and channels
has been studied recently using analytical solutions to an
extended Graetz problem [7–10] and DSMC simulations
[10,11]. Using the fact that the characteristic speed in micro
and nanodevices is usually very small (i.e. low Mach num-
ber), previous theoretical work has used the linear
Navier–Stokes–Fourier equations (which rely on quasi
local thermal equilibrium) to model flow and heat transfer
phenomena. Accommodation coefficients of diffusive reflec-
tion were employed to describe the molecular interaction
between the gas particles and solid surface atoms. The ini-
tial result in Ref. [7], based on the eigenvalues with velocity
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Nomenclature

A2 a coefficient depending on the exponent of the
inverse power potential in Eq. (4)

Ajn coefficients defined in Eq. (66)
a speed of sound
C constant
Cc concentration of the complex
Cm concentration of the gas molecule
Cn coefficients defined in Eq. (43)
Cs concentration of the site
cp specific heat
De potential parameter in the Langmuir slip model
F eigenfunctions
F coefficients defined in Eq. (41)

1F1 confluent hypergeometric function of the first
kind (Kummer function)

h heat transfer coefficient
K equilibrium constant
k Chapman–Enskog thermal conductivity
Kn Knudsen number (l/L)
kB Boltzmann constant
L characteristic length (2R)
l mean free path
M Mach number (U/a)
N number of sites
N coefficient defined in Eq. (42)
m molecular mass
Nd composite number (lUave/(pL))
Nu Nusselt number (Lh/k)
Pe Peclet number (Re Æ Pr)
Pr Prandtl number (lcp/k)
p pressure
R pipe radius
Rn coefficients defined in Eq. (43)
Re Reynolds number (qUave(2R)/l)
r̂ dimensional radial coordinate
r dimensionless radial coordinate ð

ffiffiffi
a
p

r̂=RÞ
T temperature
Tm bulk-average temperature
Tw wall temperature
T0 inlet temperature
U gas velocity
Uave gas flux-average velocity (Uave = Umax(2 � a)/2)
Umax gas maximum velocity (at the tube centerline)
u dimensionless gas velocity (U/Umax)

x a variable
ẑ axial coordinate
z dimensionless axial coordinate ðẑað2� aÞ=

ðRPeÞÞ
z+ dimensionless axial coordinate ðẑ=ðRPeÞÞ

Greek symbols

a fraction of surface covered at equilibriumffiffiffi
a
p

slip radius
b a parameter in the Langmuir slip model

(K/(kBT))
�b a coefficient in the Langmuir slip model

(1/(4xKn))
c specific heat ratio
C gamma function
Dn coefficients defined in Eq. (61)
h dimensionless temperature ((T � Tw)/(T0 � Tw))
~h a component of the dimensionless temperature

ðhðr; zÞ ¼ ~hðr; zÞ þ h0hð0; zÞÞ
h0 downstream limit of the dimensionless tempera-

ture (h0=1 � a)
hm dimensionless bulk-average temperature
Hj transformed variables of the temperature ~h
kn eigenvalue
Kn coefficients defined in Eqs. (57), (68) and (79)
l Chapman–Enskog viscosity
m exponent of the inverse power laws
q density
�r ratio of energy accommodation to momentum

accommodation ðrT=rvÞ
rv a coefficient of momentum accommodation

[(2 � /v)//v]
rT a coefficient of energy accommodation

[(2 � /T)//T Æ 2c/(c + 1) Æ 1/Pr]
/v momentum accommodation coefficient
/T thermal accommodation coefficient
x an accommodation coefficient in the Langmuir

slip model defined in Eq. (4)
x0 coefficient in the Langmuir slip model defined in

Eq. (4)

Subscripts
r reference condition
n, j n, jth eigenvalue
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slip only [12], indicated that heat transfer increases as the
degree of rarefaction increases. This seemed doubtful, phys-
ically, as the famous experimental observations of Millikan
[13] indicated that the drag coefficient decreases with
increasing rarefaction. As a result, the so-called Reynolds
analogy between heat transfer and momentum transfer
was not preserved in this previous work [7]. At the same
time, a careful investigation [8] in which the temperature
slip is taken into account revealed a more complicated
picture: that heat transfer can increase or decrease with
increasing rarefaction, depending on the ratio of energy
accommodation to momentum accommodation. Even
though this result is very instructive in its own right, a con-
ceptual problem remains. The core result depends on the



Table 1
Tabulated values of A2(m) and x0(m) for an inverse power-law molecular
force

m A2(m) x0(m)

3 1.05519 1.52001
4 0.56081 1.12217
5 0.43619 1.04409
6 0.38401 1.02807
7 0.35675 1.03094
8 0.34066 1.04056
9 0.33040 1.05255
10 0.32352 1.06517
11 0.31873 1.07762
12 0.31530 1.08955
13 0.31282 1.10090
14 0.31099 1.11157
15 0.30964 1.12160
20 0.30674 1.16325
50 0.31113 1.27766
1 0.33333 1.44051
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ratio of two free parameters (the accommodation coeffi-
cients) which must be chosen by other means, for example,
from experimental data.

Recently some new developments have been reported on
modelling gaseous slip phenomena from the viewpoint of
the gas-surface molecular interaction [14–18]. This may
provide useful information which could help solve the
aforementioned problem. An important result obtained
from this work is that a physical slip model can be derived
from Langmuir’s theory of gaseous adsorption on solids
(gas molecules can be adsorbed onto a surface owing to
long range forces between the gas particles and the surface
atoms). As a result, it has been shown that a physical
meaning (heat adsorption) can be assigned to the accom-
modation coefficient in the Maxwell model; otherwise it is
a free parameter to be determined by other means. It is
therefore interesting to examine whether the Reynolds
analogy is preserved in this Langmuir model.

The objective of our present work is to investigate
microscale heat transfer where the gaseous slips at the solid
surface, in particular the temperature jump, are the domi-
nant phenomena. Slip corrections will be made by employ-
ing the new Langmuir model as well as the conventional
Maxwell model. Our emphasis will be on the qualitative
features of microscale heat transfer, for example, enhance-
ment or reduction of heat transfer in microscale geometries.
For the purpose of avoiding numerical uncertainty in these
low-speed gas flows, we adopt an analytical solution
approach and all our calculations are done with the help
of a high-accuracy numerical program.

2. Temperature slip based on Langmuir adsorption

2.1. Langmuir’s slip model

A physical approach to describing the slip can be devel-
oped by taking into account the interfacial interaction
between the gas molecules and the surface molecules. In this
approach the gas molecules are assumed to interact with the
surface of the solid via a long range attractive force. Conse-
quently the gas molecules can be adsorbed onto the surface,
and then desorbed after some time lag. This mechanism of
the deposition of a layer with a thickness of one or more
molecules onto the surface is known as adsorption in the lit-
erature of surface chemistry [19,20]. If we model this inter-
action as a chemical reaction in which the gas molecule, m,
and the site, s, form the complex, c, we may obtain an
expression for the fraction of the surface covered by
adsorbed atoms at thermal equilibrium, a:

a ¼ ð1� aÞbp or a ¼ bp
1þ bp

; where

b ¼ K
kBT w

and K ¼ Cc

CmCs

. ð1Þ

The fraction a is a function of the pressure, p, and the equi-
librium constant, K, which are functions of the concentra-
tions Cm,s,c, and the surface temperature, Tw. As the
pressure increases, its value approaches unity, implying
that most of the molecules are at thermal equilibrium.

With information about the fraction of the surface cov-
ered at equilibrium determined by this Langmuir adsorp-
tion isotherm, it is possible to develop a slip model for
the gas-surface molecular interaction. The velocity and
temperature slip can be expressed, in dimensional form,
as [14–16]

u ¼ auw þ ð1� aÞug; T ¼ aT w þ ð1� aÞT g; ð2Þ
where subscript g denotes a local value adjacent to the wall,
for example, a mean free path away from the wall, or a ref-
erence value such as the free-stream condition. The only
parameter requiring further investigation is b (or the equi-
librium constant K). A previous study [16] showed that the
parameter b takes the form

b ¼ 1

4xKn
1

pr

; ð3Þ

where

x ¼ x0ðmÞ
T w

T r

� �1þ2=ðm�1Þ

exp � De

kBT w

� �
;

x0ðmÞ ¼
8
ffiffiffi
2
p

5p
A2ðmÞC 4� 2

m� 1

� �
. ð4Þ

Then Eq. (1) reduces to (in dimensionless form),

a ¼
�bp

1þ �bp
; where �b ¼ 1

4xKn
. ð5Þ

Tabulated values of A2(m) and x0(m) are given in Table 1 for
exponents m > 2 [3,21]. The coefficient x0 has a value
between 1.02806 (for m = 6) and 1.52001 (for m = 3) and
becomes 1.44051 (for m!1) for rigid elastic sphere mole-
cules. The role of the coefficient x, which is a function of m,
Tw, and De, is very similar to the slip coefficient, r, in the
Maxwell model. For most molecular interaction models,
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the value of the heat of adsorption, De, falls within the
range O(10�1–10) kcal/mol. Its value may be inferred from
theoretical predictions of intermolecular forces, or from
experimental data.

A few comments should be added with regard to the char-
acteristics of this slip model, and their implications. First, in
the present model there are no terms related to high-order
effects, such as thermal creep and viscous heat dissipation.
This is in contrast to the common practice of including them
in the original formulation but later ignoring them by
assuming a low Mach number flow. The same spirit is taken
in the development of our model, but it is implemented dif-
ferently. The composite number, Nd, defined as the ratio of
viscous forces to the hydrostatic pressure, is a parameter
which indicates the degree of thermal non-equilibrium in
macroscopic thermodynamic space. It can be shown that
the nature of the constitutive equations in either the moment
method [5] or the Chapman–Enskog method [3] depends
primarily on this parameter. Consequently, the slip phe-
nomenon consists largely of two components: one being
the non-Newtonian effect in the bulk flow region measured
by the composite number, Nd, and the other being the gas-
surface molecular interaction measured by the Knudsen
number, Kn. The former is of purely hydrodynamic origin,
and has nothing to do with the gas-surface molecular inter-
action. It is responsible for non-linear coupling effects,
including the aforementioned high-order effects. Since
Nd � Kn Æ M, these non-linear effects are usually negligible
for small Mach number, meaning that the linear Navier–
Stokes–Fourier equations can still be valid in most low-
speed microscale gas flows. However, coupling between
the normal and shear stresses may be non-negligible even
when Nd is small, and this may produce a Knudsen-layer
effect even at low speeds. While this remains to be investi-
gated, in any case, it is of lesser importance than the slip
effect due to the gas-surface molecular interaction and con-
sequently it is ignored in our present study. Non-negligible
Knudsen numbers in microscale gas flows require some kind
of model capable of describing the slip phenomenon.

The second comment we make here is that, within this
new framework, there is no distinction between momentum
and energy accommodation: they are represented by a
single parameter a (0 6 a 6 1), the fraction of the surface
covered by adsorbed atoms at thermal equilibrium. This
feature is in some sense equivalent to the case of equal
momentum and energy accommodation in the Maxwell
model. Since the ratio of momentum and energy accommo-
dation plays a crucial role in determining the qualitative
features of microscale heat transfer, enhancing or reducing
heat transfer [7,8,10,22], this difference may have important
implications. This will be discussed in detail in Section 3.
However, when we consider the fact that the accommoda-
tion coefficients in the Maxwell model do not depend
explicitly on the wall temperature, while the parameter a
in the Langmuir model is a function of the wall tempera-
ture, the difference is largely related to how one implements
the wall temperature dependence. Therefore, it can be said
that there is no prior theoretical justification in favor of one
model or the other, except that the Langmuir model is sim-
pler (involving only one parameter, instead of two in the
case of the Maxwell model).

2.2. The extended Graetz problem

The low-speed microscale (creeping) regime, typical of
gas flows in microsystems at atmospheric conditions, gen-
erally falls within the non-equilibrium parameter ranges

Kn ¼ Oð10�2–1Þ; N d ¼ Oð10�5–10�2Þ.
In this range of small values of Nd, the Newtonian (Navier–
Stokes–Fourier) constitutive equations are assumed to be
valid. On the other hand, non-negligible Knudsen numbers
require a slip model for the gas-surface molecular interac-
tion. If we consider monatomic gas flow and heat transfer
in forced laminar flow through a circular tube with con-
stant-wall temperature with the usual assumptions of the
classical Graetz problem, i.e. fully developed flow, incom-
pressible, constant-properties gas, and high Peclet number
[23], the momentum and energy equations may be ex-
pressed as

1

r̂
d

dr̂
r̂

dU
dr̂

� �
¼ C; ð6Þ

qcpU
oT
oẑ
¼ k

1

r̂
o

or̂
r̂
oT
or̂

� �
; ð7Þ

with the Langmuir slip boundary conditions at the station-
ary wall

Uðr̂ ¼ RÞ ¼ ð1� aÞUmax; ð8Þ
T ðr̂ ¼ R; ẑÞ ¼ aT w þ ð1� aÞT ðr̂ ¼ 0; ẑÞ; ð9Þ

where the non-equilibrium parameter a is related to �b by
the relation

a ¼
�b

1þ �b
ð10Þ

and other boundary conditions of

oU
or̂

� �
r̂¼0

¼ 0; ð11Þ

oT
or̂

� �
r̂¼0

¼ 0; ð12Þ

T ðr̂; ẑ ¼ 0Þ ¼ T 0. ð13Þ

In the temperature jump boundary condition (9), a local
temperature at the tube centerline T ðr̂ ¼ 0; ẑÞ is used as
the reference temperature Tg so as to take into account
the axial variation of the gas temperature adjacent to the
tube wall. This is in the same spirit as the Maxwell model,
where such variation is included through the radial gradi-
ent of local temperature near the wall.

It is worth mentioning that our present model can be
easily extended to treat flow in a microchannel with a
minor change accounting for the different geometry [9,10].
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If we calculate the velocity profile Uðr̂Þ by solving (6)
with the boundary conditions (8) and (11), we obtain the
following solution:

Uðr̂Þ ¼ C
4
ðr̂2 � R2Þ þ ð1� aÞU max; ð14Þ

where C is a constant. As Umax represents the gas velocity
at the tube centerline, the dimensionless velocity can then
be written as

Uðr̂Þ
Umax

¼ 1� a
r̂2

R2
. ð15Þ

With a dimensionless variable defined through

r ¼
ffiffiffi
a
p r̂

R
; ð16Þ

Eq. (15) reduces to

uðrÞ ¼ 1� r2. ð17Þ
Here, the parameter

ffiffiffi
a
p

represents a slip radius, which was
first introduced by Larrodé et al. [8] in the context of the
Maxwell slip model. After inserting the velocity solution
into the energy equation and introducing the following
dimensionless variables and relations

h ¼ T � T w

T 0 � T w

; z ¼ ẑ
R

að2� aÞ
Pe

; ð18Þ

U ave ¼ U max

ð2� aÞ
2

; Re ¼ qU aveð2RÞ
l

; Pr ¼ lcp

k
;

Pe ¼ Pr � Re; ð19Þ

we obtain the following equations for the temperature
profile

ð1� r2Þ oh
oz
¼ 1

r
o

or
r
oh
or

� �
ð20Þ

and boundary conditions

hðr ¼
ffiffiffi
a
p

; zÞ ¼ h0hðr ¼ 0; zÞ; ð21Þ

oh
or

� �
r¼0

¼ 0; ð22Þ

hðr; z ¼ 0Þ ¼ 1; ð23Þ

where

h0 ¼ 1� a.

In the limit of continuum gas flow (i.e. Kn! 0, �b!1,
a! 1) the usual dimensionless variables are recovered
and the problem reduces to the classical Graetz problem,
which can be solved analytically using orthogonal eigen-
functions of the Sturm–Liouville boundary value problem
[24,25]. On the other hand, the value of h at the wall
becomes non-zero in slip flow and consequently the math-
ematical problem involves non-homogeneous boundary
conditions. However, if we note that the governing
equation is linear, and that the coordinate z plays a role
very similar to the time, we may solve it by reducing it to
a problem with homogeneous boundary conditions. Specif-
ically, via the assumption of

hðr; zÞ ¼ ~hðr; zÞ þ h0hðr ¼ 0; zÞ ð24Þ
and

~hðr ¼ 0; zÞ ¼ ð1� h0Þhðr ¼ 0; zÞ ð25Þ
the problem reduces to

ð1� r2Þ o~h
oz
þ h0

1� h0

d~hðr ¼ 0; zÞ
dz

" #
¼ 1

r
o

or
r
o~h
or

 !
; ð26Þ

with boundary conditions

~hðr ¼
ffiffiffi
a
p

; zÞ ¼ 0; ð27Þ

o~h
or

" #
r¼0

¼ 0; ð28Þ

~hðr; z ¼ 0Þ ¼ 1� h0. ð29Þ

The mathematical problem of the temperature distribution
~hðr; zÞ is no longer a type of classical Sturm–Liouville
boundary value problem, owing to the second term on
the lefthand side of the differential equation (26). However,
it is still possible to develop an approximate method by
which the qualitative aspect of the slip effect in microscale
heat transfer can be obtained. If the term, h0

1�h0

d~hðr¼0;zÞ
dz , is

ignored it is straightforward to obtain an exact solution,
since the equation for the transient temperature distribu-
tion ~hðr; zÞ is then exactly the same as in the classical
Graetz problem, except for a different constant value at
the inlet condition and the wall boundary condition at
r ¼

ffiffiffi
a
p

instead of r = 1

~hðr; zÞ ¼
X1
n¼1

an exp �k2
nz

� �
F nðrÞ; ð30Þ

where the eigenfunctions Fn(r) satisfy

d

dr
r

dF
dr

� �
þ k2

nwðrÞF ¼ 0; ð31Þ

subject to the homogeneous boundary conditions

F ðr ¼
ffiffiffi
a
p
Þ ¼ 0; ð32Þ

dF
dr

� �
r¼0

¼ 0. ð33Þ

Here the weighting function w(r) is defined as

wðrÞ ¼ rð1� r2Þ
and w(r) P 0 at all points in 0 6 r 6

ffiffiffi
a
p

. The eigenfunc-
tions may be expressed in terms of the confluent hypergeo-
metric function of the first kind 1F1 as follows (with the
normalization F(0) = 1)

F nðrÞ ¼ exp � kn

2
r2

� �
1F 1

1

2
� kn

4
; 1; knr2

� �
. ð34Þ

It should be mentioned that due to the ill-posedness at
r = 0 the confluent hypergeometric function of the second
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kind [26,27] is excluded from the solution. The function

1F1, also known as the Kummer function in the literature
[27,28], is defined as an infinite series

1F 1ða;b;xÞ ¼ 1þ a
b

xþ aðaþ 1Þ
bðbþ 1Þ

x2

2!
þ aðaþ 1Þðaþ 2Þ

bðbþ 1Þðbþ 2Þ
x3

3!
þ � � �

ð35Þ

and satisfies the following relation:

d

dx
½1F 1ða; b; xÞ� ¼ a

b 1F 1ðaþ 1; bþ 1; xÞ. ð36Þ

Then the eigenvalues kn can be obtained by solving the
transcendental equation that arises from applying bound-
ary condition (32) to the function (34)

1F 1

1

2
� kn

4
; 1; kna

� �
¼ 0. ð37Þ

For further analysis, a first-order approximation to the nth
positive zero of the function 1F1(a;b;x) for large 1

2
b� a

[27,29] is also given as

xn+
p2 nþ 1

2
b� 3

4

� �2

2b� 4a
. ð38Þ

The constants an can be determined from the boundary
condition (29) by utilizing the orthogonality properties of
the eigenfunctions

an ¼ a
Fn

Nn
; ð39Þ

which can be further simplified into

an ¼ að�Þ 4
ffiffiffi
a
p

Cnkn
ð40Þ

by invoking the following useful relations

Fn �
Z ffiffi

a
p

0

wðrÞF nðrÞdr

¼ �
ffiffiffi
a
p

Rn

k2
n

¼ � 1

k2
n

 !Z ffiffi
a
p

0

d

dr
r

dF
dr

� �
dr

" #
; ð41Þ

Nn �
Z ffiffi

a
p

0

wðrÞF 2
nðrÞdr

¼ CnRn

4kn
¼

ffiffiffi
a
p

2kn

oF n

ok
oF n

or
� F n

o
2F n

okor

� �
r¼
ffiffi
a
p

" #
; ð42Þ

where the coefficients Rn and Cn are defined by

Rn ¼
oF n

or

� �
r¼
ffiffi
a
p
; Cn ¼ 2

ffiffiffi
a
p oF n

ok

� �
r¼
ffiffi
a
p

. ð43Þ

In deriving relation (42) L’Hospital’s rule was used. Finally
the local temperature distribution can be described as

~hðr; zÞ ¼ að�4
ffiffiffi
a
p
Þ
X1
n¼1

exp �k2
nz

� �
F nðrÞ

Cnkn
. ð44Þ
Then the flux-averaged mean temperature

~hmðzÞ ¼
R ffiffiap

0
~hðr; zÞwðrÞdrR ffiffiap
0

wðrÞdr
; ð45Þ

reduces to

~hmðzÞ ¼
16a

2� a

X1
n¼1

Rn expð�k2
nzÞ

Cnk
3
n

. ð46Þ

In addition, the Nusselt number, defined as

Nu ¼ ð�2RÞ
T m � T w

oT
or

� �
r¼R

¼ ð�2
ffiffiffi
a
p
Þ

~hm

o~h
or

" #
r¼
ffiffi
a
p
; ð47Þ

becomes

Nu ¼ að2� aÞ
2

P1
n¼1Rn expð�k2

nzÞ=ðCnknÞP1
n¼1Rn expð�k2

nzÞ=ðCnk
3
nÞ

. ð48Þ

It can be easily verified that the solution of the classical
Graetz problem is recovered in the continuum limit a! 1.

From these results, an approximate solution of the non-
classical Sturm–Liouville boundary value problem can be
constructed by considering an auxiliary problem of ortho-
gonal eigenfunctions Fn(r) associated with the Graetz prob-
lem, which are given in Eqs. (31)–(33) and (37). Here we
will extend a finite integral transform technique [30,31] to
solve an extended Graetz problem in the slip-flow case. It
is straightforward to identify the following integral trans-
form pair from this problem:

Transform : HjðzÞ ¼
Z ffiffi

a
p

0

wðrÞF jðrÞ~hðr; zÞdr; ð49Þ

Inversion : ~hðr; zÞ ¼
X1
j¼1

1

Nj
F jðrÞHjðzÞ. ð50Þ

If we apply an operation
R ffiffiap

0
rF jðrÞdr to Eq. (26) and note

that

d~hðr ¼ 0; zÞ
dz

¼
X1
j¼1

1

Nj

dHjðzÞ
dz

; ð51Þ

then we have

dHjðzÞ
dz

þ h0Fj

1� h0

X1
n¼1

1

Nn

dHnðzÞ
dz

¼�k2
j HjðzÞ; j¼ 1;2; . . . .

ð52Þ
The transformed form of the boundary condition (29) can
be written as

Hjðz ¼ 0Þ ¼ ð1� h0ÞFj. ð53Þ
The system (52) is an infinite set of coupled first-order dif-
ferential equations for the transforms Hj(z). Once they are
determined, the transient temperature distribution ~hðr; zÞ
can be obtained by the inversion formula. Here we are
interested only in qualitative aspects of the effects of the
temperature jump, so we limit ourselves to the explicit
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lowest order solution. By retaining only one term in the ser-
ies (j = n), we obtain the following decoupled system:

1þ h0

1� h0

Fn

Nn

� �
dHn

dz
þ k2

nHn ¼ 0 n ¼ 1; 2; . . . ð54Þ

with

Hnðz ¼ 0Þ ¼ ð1� h0ÞFn. ð55Þ

The solutions are

HnðzÞ ¼ ð1� h0ÞFn expð�K2
nzÞ; ð56Þ

where

K2
n ¼

k2
n

1þ h0

1� h0

Fn

Nn

¼ k2
n

1� h0

1� h0

4
ffiffiffi
a
p

Cnkn

. ð57Þ

Then the temperature distribution can be given approxi-
mately as

hðr; zÞ ¼ �4
ffiffiffi
a
p X1

n¼1

expð�K2
nzÞ

Cnkn
½ð1� h0ÞF nðrÞ þ h0�. ð58Þ

Other important equations follow:

hmðzÞ ¼
16ð1� h0Þ

2� a

X1
n¼1

Rn expð�K2
nzÞ

Cnk
3
n

½1þ h0Dn�; ð59Þ

Nu ¼ að2� aÞ
2

P1
n¼1Rn expð�K2

nzÞ=ðCnknÞP1
n¼1½1þ h0Dn�Rn expð�K2

nzÞ=ðCnk
3
nÞ
; ð60Þ

where

Dn � �
ffiffiffi
a
p
ð2� aÞ

4ð1� h0ÞRn
k2

n. ð61Þ
2.3. The effect of axial heat conduction

An implicit assumption made in the Graetz problem is
that of a high Peclet number (Pe = Re Æ Pr), meaning that
the axial conduction is negligible in comparison with the
axial convection. Inclusion of the effects of axial heat con-
duction may, however, be necessary in microscale heat
transfer since the Peclet number in small-scale geometries
is usually low.

If we include the axial conduction term in the energy
equation, the resulting equation can be expressed in dimen-
sionless form as

ð1� r2Þ oh
oz
¼ 1

r
o

or
r
oh
or

� �
þ 1

Pe2

o2h
oz2

; ð62Þ

where

Pe ¼ Peffiffiffi
a
p
ð2� aÞ . ð63Þ
Then the new problem is equivalent to solving

ð1� r2Þ o~h
oz
þ h0

1� h0

d~hðr ¼ 0; zÞ
dz

" #

¼ 1

r
o

or
r
o~h
or

 !
þ 1

Pe2

o
2~h

oz2
; ð64Þ

with the same boundary conditions as in Eqs. (27)–(29).
In order to treat the effect of axial heat conduction, var-

ious approaches have been developed in the literature; for
example, expanding the temperature field in terms of the
infinite Fourier sine series [32,33] or expressing the non-
orthogonal eigenfunctions in terms of the eigenfunction
of an auxiliary orthogonal system [34]. Here we again use
a finite integral transform technique [30,31] to handle the
second order term. The transformed form of the governing
Eq. (64) reduces to

dHjðzÞ
dz

þ h0Fj

1� h0

X1
n¼1

1

Nn

dHnðzÞ
dz

¼ �k2
j HjðzÞ þ

1

Pe2

X1
n¼1

Ajn
d2HnðzÞ

dz2
; j ¼ 1; 2; . . . ; ð65Þ

where

Ajn ¼
1

Nn

Z ffiffi
a
p

0

rF jðrÞF nðrÞdr. ð66Þ

By retaining only one term in the series (j = n), we obtain
the following second order decoupled system:

Ann

Pe2

d2Hn

dz2
� 1þ h0

1� h0

Fn

Nn

� �
dHn

dz
� k2

nHn ¼ 0;

n ¼ 1; 2; . . . ð67Þ

For this differential equation we have the following
coefficients

K2
n¼

1

2

Pe2

Ann

�
1� h0

1�h0

4
ffiffi
a
p

Cnkn

	 
2

þ4k2
n
Ann

Pe2 1� h0

1�h0

4
ffiffi
a
p

CnknAnn

	 
� �1=2

� 1� h0

1�h0

4
ffiffi
a
p

Cnkn

	 

1� h0

1�h0

4
ffiffi
a
p

CnknAnn

.

ð68Þ
It can be noted that the effect of axial conduction appears
only through the term Kn; in other words, the solution of
the case involving axial conduction can be obtained simply
by replacing Eq. (57).

2.4. Comparison with Maxwell’s slip model

An alternative way of including slip is to make a correc-
tion based on the degree of non-equilibrium near the wall
surface, which can best be represented by the shear stress
and heat flux. This idea can be traced to the work of Max-
well [35] and subsequent work by Smoluchowski [36] in
which the following slip boundary conditions are proposed:
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Uðr̂ ¼ RÞ ¼ rvl � dU
dr̂

� �
r̂¼R

; ð69Þ

T ðr̂ ¼ RÞ ¼ T w þ rTl � dT
dr̂

� �
r̂¼R

; ð70Þ

where l is the gas molecular mean free path. It is also pos-
sible to include non-linear coupling effects like thermal
creep and viscous heat dissipation, but they are assumed
to be negligible in the present study under the assumption
of small Mach number.

In principle, the coefficients rv and rT may depend on
various properties of the interaction of the gas with the sur-
face: the gas and surface temperatures, the surface rough-
ness, the type of gas molecules (i.e. monatomic or
diatomic) and type of surface molecules. However, these
dependences are neglected in most models and they are
usually incorporated into overall accommodation coeffi-
cients which express the degree of diffusive reflection at
the surface

rv ¼
2� /v

/v

; ð71Þ

rT ¼
2� /T

/T

2c
cþ 1

1

Pr
; ð72Þ

where /v and /T represent momentum and thermal accom-
modation coefficients. In practice, their values are chosen
so that they fit best to the experimental data and are tabu-
lated for various gases and surfaces.

We now apply the Maxwell slip conditions (69) and (70)
to the momentum and energy Eqs. (6) and (7). It is straight-
forward to show that, with a definition

a ¼ 1

1þ 4rvKn
; ð73Þ

the resulting velocity profile is exactly the same as the one
in the Langmuir slip model (17). In addition, if the follow-
ing relation is assumed,

rv ¼ x; ð74Þ
the slip radius in the Maxwell slip model becomes equiva-
lent to that (

ffiffiffi
a
p

) in the Langmuir slip model.
On the other hand, there do exist differences in the

results for the temperature distribution, which can be iden-
tified by examining the solutions of the Graetz problem
with the Maxwell slip boundary conditions derived by Lar-
rodé et al. [8]. Specifically, by using the mixed boundary
condition of the Maxwell slip model (70) in place of the
non-homogeneous boundary condition of the Langmuir
slip model (21) we can derive a different series solution to
the Sturm–Liouville boundary value problem:

hðr; zÞ ¼
X1
n¼1

an expð�k2
nzÞF nðrÞ; ð75Þ

with a homogeneous (mixed) boundary condition

F ðr ¼
ffiffiffi
a
p
Þ þ �r

2

ð1� aÞffiffiffi
a
p dF

dr

� �
r¼
ffiffi
a
p
¼ 0; ð76Þ
where �r represents the ratio of energy accommodation to
momentum accommodation,

�r ¼ rT

rv

.

Because of the mixed boundary condition the transcenden-
tal equation takes the following complicated form:

1F 1

1

2
� kn

4
; 1; kna

� �
þ �r

2
knð1� aÞ;

2� kn

2
1F 1

3

2
� kn

4
; 2; kna

� �
� 1F 1

1

2
� kn

4
; 1; kna

� �� �
¼ 0.

ð77Þ

Other important relations remain the same as in Eqs. (44),
(46) and (48). Similar to the previous case, the solution
reduces to the classical Graetz solution in the continuum
limit. A more detailed derivation may be found in Ref. [8].

A similar technique can be applied to the case involving
axial heat conduction. By using the transformed form of
the Maxwell boundary condition, we have

Hnðz ¼ 0Þ ¼Fn. ð78Þ
Due to the second order term the new eigenvalues become

K2
n ¼

1

2

Pe2

Ann
1þ 4k2

n

Ann

Pe2

� �1=2

� 1

" #
. ð79Þ

Then we obtain the following results (where the effect of
axial conduction appears through the term Kn):

hðr; zÞ ¼ �4
ffiffiffi
a
p X1

n¼1

expð�K2
nzÞF nðrÞ

Cnkn
; ð80Þ

hmðzÞ ¼
16

2� a

X1
n¼1

Rn expð�K2
nzÞ

Cnk
3
n

; ð81Þ

Nu ¼ að2� aÞ
2

P1
n¼1Rn expð�K2

nzÞ=ðCnknÞP1
n¼1Rn expð�K2

nzÞ=ðCnk
3
nÞ

. ð82Þ
3. Results and discussion

The numerical evaluation of the local temperature distri-
bution and the Nusselt number for a given value of a
requires information about the eigenvalues kn and the coef-
ficients Rn, Cn and Ann. The eigenvalues can be calculated
from Eq. (37) using a root-finding method (for example,
the secant method). Once the eigenvalues are known, the
eigenfunctions can be determined from Eq. (34). Then the
coefficients Rn, Cn and Ann can be obtained by evaluating
the integrals (41), (42) and (66) numerically. We perform
all these calculations with the help of the high-accuracy
numerical program Mathematica [37]. However, accurate
asymptotic expressions similar to the one developed for
the original Graetz series in Ref. [38] may be needed
when a detailed knowledge of the temperature distribu-
tion near the entrance is required. Similarly, we evaluate
the eigenvalues kn in the Maxwell model by solving the
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transcendental Eq. (77) using Mathematica [12,37]. The
numerical values of the eigenvalues and coefficients in the
Langmuir model are summarized for different Knudsen
numbers (0.0–0.12) in Table 2. The first seven eigenvalues
and coefficients were obtained from an exact evaluation.
Since we are interested mainly in the qualitative aspects
of the slip models, only a case with non-negligible Knudsen
number (0.02) is considered for the Maxwell model, and
this is summarized in Table 3.

The effect of rarefaction, represented by a, on the eigen-
values kn and coefficients Rn, Cn and Ann is shown in Table
2. It can be seen that there is a monotonic variation in the
eigenvalues kn and coefficients Ann. In fact, the increase in
magnitude of the eigenvalues with increasing rarefaction
can be predicted by an approximate relation kn �
Table 2
Eigenvalues kn and other coefficients (Rn;Cn;Ann) in the Langmuir slip model

Knnkn k1 k2 k3

(a)
0.00 2.70436 6.67903 10.6734
0.005 2.72456 6.71548 10.7232
0.02 2.78455 6.82612 10.8773
0.04 2.86309 6.97560 11.0909
0.06 2.93999 7.12611 11.3103
0.08 3.01530 7.27672 11.5330
0.10 3.08906 7.42678 11.7573
0.12 3.16133 7.57587 11.9820

KnnRn R1 R2 R3

(b)
0.00 �1.01430 1.34924 �1.57233
0.005 �1.02953 1.37849 �1.61518
0.02 �1.07394 1.46243 �1.73654
0.04 �1.13052 1.56656 �1.88394
0.06 �1.18443 1.66326 �2.01793
0.08 �1.23602 1.75380 �2.14122
0.10 �1.28555 1.83915 �2.25584
0.12 �1.33326 1.92008 �2.36332

KnnCn C1 C2 C3

(c)
0.00 �1.001800 0.742925 �0.636523
0.005 �0.982258 0.724541 �0.617701
0.02 �0.928106 0.675197 �0.568652
0.04 �0.864818 0.620159 �0.516226
0.06 �0.809814 0.574288 �0.474128
0.08 �0.761523 0.535306 �0.439310
0.10 �0.718764 0.501664 �0.409858
0.12 �0.680621 0.472266 �0.384510

KnnAnn A11 A22 A33

(d)
0.00 1.25123 1.45617 1.53713
0.005 1.24570 1.44449 1.52187
0.02 1.23045 1.41241 1.48010
0.04 1.21279 1.37564 1.43268
0.06 1.19761 1.34448 1.39306
0.08 1.18442 1.31782 1.35967
0.10 1.17286 1.29481 1.33124
0.12 1.16265 1.27478 1.30681
pðn� 1
4
Þ=

ffiffiffi
a
p

, which may be derived by combining Eqs.
(37) and (38). On the other hand, the trend is reversed in
the case of the Maxwell model, which can be observed from
Table 3. The perturbrative calculation of the eigenvalues
for Eq. (77) [8] indicates that the first-order correction
depends on the parameter ð1� �rÞ and consequently it is
negative for the present case with �r ¼ 15=8. It should be
mentioned, however, that the difference in the effect of rar-
efaction on the eigenvalues has no physical importance and
is related to different mathematical forms of the slip mod-
els: one of the Dirichlet type and the other of the Neumann
type.

Fig. 1 shows the effect of rarefaction on the local Nusselt
number along the tube using the Langmuir model. It is
assumed that the axial conduction is small in comparison
for different Knudsen numbers (x = 1.0)

k4 k5 k6 k7

14.6711 18.6699 22.6691 26.6687
14.7329 18.7427 22.7523 26.7616
14.9270 18.9748 23.0209 27.0658
15.2017 19.3090 23.4137 27.5165
15.4883 19.6622 23.8331 28.0019
15.7824 20.0273 24.2692 28.5091
16.0806 20.3994 24.7154 29.0295
16.3808 20.7753 25.1671 29.5572

R4 R5 R6 R7

1.74602 �1.89088 2.01643 �2.12820
1.80228 �1.96034 2.09904 �2.22369
1.95963 �2.15265 2.32535 �2.48329
2.14720 �2.37798 2.58646 �2.77841
2.31467 �2.57605 2.81278 �3.03100
2.46664 �2.75363 3.01360 �3.25320
2.60636 �2.91547 3.19535 �3.45309
2.73627 �3.06498 3.36238 �3.63605

C4 C5 C6 C7

0.572959 �0.528975 0.495998 �0.469928
0.553493 �0.508876 0.475282 �0.448671
0.504164 �0.459160 0.425213 �0.398283
0.453380 �0.409679 0.376861 �0.350968
0.413851 �0.372168 0.341046 �0.316627
0.381849 �0.342341 0.312986 �0.290052
0.355200 �0.317797 0.290115 �0.268558
0.332519 �0.297081 0.270935 �0.250623

A44 A55 A66 A77

1.58458 1.61707 1.64133 1.66037
1.56664 1.59699 1.61940 1.63687
1.51779 1.54245 1.56009 1.57340
1.46286 1.48171 1.49461 1.50397
1.41756 1.43220 1.44185 1.44861
1.37985 1.39147 1.39888 1.40392
1.34813 1.35755 1.36338 1.36725
1.32115 1.32892 1.33363 1.33669



Table 3
Eigenvalues kn and other coefficients (Rn;Cn;Ann) in the Maxwell slip
model (Kn = 0.02, rv ¼ 1:0; �r ¼ 15=8)

n kn Rn Cn Ann

1 2.63250 �1.03304 �1.000140 1.27146
2 6.55378 1.33356 0.760266 1.49615
3 10.5081 �1.51051 �0.668529 1.58485
4 14.4737 1.63120 0.617769 1.63486
5 18.4462 �1.71800 �0.585686 1.66686
6 22.4239 1.78166 0.564091 1.68856
7 26.4060 �1.82849 �0.549087 1.70363
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Fig. 1. Local Nusselt number along the tube for different values of Kn

(equivalently, a) (x = 1.0, Pe = 10.0).
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Fig. 2. Effect of axial heat conduction on the variation of Nusselt number.
The thin solid lines denote the solutions without axial heat conduction
(Pe!1) while the thick solid lines represent the solutions with axial heat
conduction (Pe = 10.0).
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Fig. 3. Comparison of local Nusselt number along the tube using the
Maxwell model (Kn = 0.02, Pe ¼ 10:0; c ¼ 5
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with the axial convection (Pe = 10.0). It can be seen that
the heat transfer, represented by the Nusselt number,
always decreases with increasing rarefaction. Therefore
the Reynolds analogy is preserved in the case of the Lang-
muir model.

In passing, it would be of interest to check the accuracy
of the present approximate solution. A simple error esti-
mate is possible by substituting the lowest order solution
Eq. (56) into the coupled differential equation (52). (The
case without axial conduction is considered for simplicity.)
The determinant of a matrix in which non-diagonal
terms were neglected in the lowest order solution,
a2K2

1K
2
2F

2
1F

2
2 exp½�ðK2

1 þ K2
2Þz�=ðN1N2Þ when the first

two eigenvalues are considered, can serve as an error esti-
mate. This reduces to 1.485exp(�56.55z+) (F1 ¼ 0:1333,
F2 ¼ �0:0302), and at z+ = 0.05 its value becomes
0.0879. This analysis indicates that the present solution is
very close to the exact solution, especially for large values
of z+.

In order to examine the effect of the Peclet number on
the variation of the local Nusselt number, two cases
(Pe = 10.0,Pe!1) are illustrated in Fig. 2. This figure
indicates that the effect of axial heat conduction is to
increase the local Nusselt number along the tube. As the
Peclet number decreases, Eq. (68) reduces to K1 < k1 and
therefore the local Nusselt number in Eq. (60) increases.
It can also be seen in the figure that the effect of axial heat
conduction decreases with increasing rarefaction. That is,
as the value of a decreases with increasing rarefaction,
the value of Pe2=A11 increases and as a result K1! k1.
Thus the increment in the local Nusselt number by axial
heat conduction is reduced for increasing rarefaction.
These qualitative properties are, in fact, in agreement with
the independent result of Ref. [10], where both an analyti-
cal method using the Maxwell model and DSMC simula-
tions are employed.

Fig. 3 shows a comparison of the local Nusselt numbers
along the tube predicted by the Maxwell model. The
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assumption of equal momentum and energy accommoda-
tion coefficients /v = /T, or �r ¼ 15=8, for c ¼ 5

3
and

Pr ¼ 2
3

is used here. This figure shows that heat transfer
reduces with increasing rarefaction in both models, even
though the level of reduction is slightly more pronounced
in the Langmuir models. This finding coincides with the
conclusion of Ref. [8] that a heat transfer reduction is pre-
dicted for �r > 1 in slip flow. Note also from Fig. 3 that
there exists an asymptotic value of the Nusselt number in
both the Maxwell and Langmuir models. (In comparison,
Nu � 3.657 for the continuum case, 3.446 in the Maxwell
model and 3.355 in the Langmuir model, for Kn = 0.02.)

Fig. 4 shows the axial variation of temperature, mea-
sured at the centerline of the tube, h(r = 0,z+), for Knudsen
numbers (0.0,0.02). The eigenfunctions necessary for deter-
mining the temperature profile are obtained by summation
of the first 60 terms in the infinite series of the Kummer
function. It can be seen that, due to the jump at the wall,
the level of temperature reduction along the tube centerline
decreases with increasing rarefaction. Note also that the
Maxwell model and the Langmuir model yield almost the
same temperature profile, even though, due to the numeri-
cal error associated with the lowest order treatment of the
term h0

1�h0

d~hðr¼0;zÞ
dz in Eq. (26), the profile of the Langmuir

model near the tube inlet (small z+) deviates from the Max-
well model.

Finally, from the results presented in Figs. 1–4 it can be
concluded that both models predict that the Reynolds anal-
ogy is preserved in low speed slip flow. In our opinion, the
case with �r > 1 is more relevant physically since a large dif-
ference in momentum and energy coefficients is extreme
rather than typical in the Maxwell model. In addition, by
recalling that the reduction of drag coefficient in slip flow
is directly related to the decrease of the tangential velocity
gradient near the wall due to the velocity slip, one can
expect that the same mechanism associated with the temper-
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Fig. 4. Comparison of temperature variation at the centerline of the tube.
(Langmuir and Maxwell models; Pe ¼ 10:0; c ¼ 5

3
, Pr ¼ 2

3
; �r ¼ 15=8).
ature jump is responsible for the reduction of heat transfer
in slip flow, implying the preservation of the Reynolds anal-
ogy in slip-flow regimes. An experimental validation study
will be required to clarify this critical issue in the future.

4. Conclusions

As a step towards answering a fundamental physical
question in microscale heat transfer, convective heat trans-
fer in a microtube in slip-flow regimes was investigated
using a mathematical method extended from the classical
Graetz problem. The slip corrections were made by
employing a new Langmuir model based on the concept
of adsorption of gases onto solids, as well as the conven-
tional Maxwell model. The effects of axial heat conduction
were included by extending a finite integral transform tech-
nique to the slip-flow case. We found that the Langmuir
model always predicts the reduction of heat transfer with
increasing gas rarefaction, and the Maxwell model predicts
the same, except when the value of the energy accommoda-
tion is much smaller than that of the momentum accommo-
dation. This implies that, for most physical applications,
the Reynolds analogy between heat transfer and momen-
tum transfer is preserved in slip-flow regimes with low
Mach numbers.
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